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1. Introduction iQ\\ t !

The goal of this project was to build on an understanding of the connections be-
tween knot invariants, exactly solvable statistical mechanics models and discrete
dynamical systems toward an answer to the question of how early and robust ther-
modynamic behavior appears in lattice gas automata. Preliminary work focussed
on developing our understanding of state models in knot theory and their relation
to statistical mechanics models; this work is described in [1].

Rather than considering the complicated and somewhat more difficult case of
lattice gas hydrodynamics we began with a simpler model: a reversible cellular au-
tomaton in one dimension. This particular automaton has an additive conserved
quantity which Takesue has used to construct a one dimensional statistical me-
chanics model [2]. He observes in simulations that the cellular automaton displays
thermodynamic behavior which is well described by this one dimensional statistical
mechanics model. In [3] and [4] we showed that there is a naturally associated two
dimensional statistical mechanics model as well, then examined the properties of
this model, and suggested how these properties may relate to the behavior of the
dynamical cellular automaton. This work is described in the following section.

Having applied these ideas successfully to the simple case of a reversible cellular
automaton, we moved on to the more interesting case of lattice gases. Since our
approach equates the spacetime evolution of a dynamical system with an equilibrium
configuration of a statistical mechanics model in ore higher dimension, a model of
't Hooft for two dimensional spacetime with discrete local coordinate invariance
was a natural inspiration [5]. In [6] we detail the construction of a family of one
dimensional lattice gas automata based on this model. This work is summarized in
section 3.
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2. Cellular automata

We focus on reversible models for several reasons: Microscopically. one expects
physical theories to be reversible. Moreover, with the additional constraiut of dis-
creteness, reversibility implies that phase space volume 1s conserved under the evo-
lution; hence an analog of Liouville’s Theorem applies. Finally, when some locally
defined and additive quantity is conserved, the system is similar to a Hamiltonian
system. the context in which questions of ergodicity and thermodynamic behavior
are usually studied.

Motivated by these considerations, Takesue has begun an analysis of the class
of one dimensional reversiblc cellular automata with a nearest neighbor rule [7]. In
particular, consider the the one dimensional automaton with a boolean variable at
each site evolving according to

ot = flo{_;,0{.0{41) XOR o
where f:{0,1}® — {0,1} is given by
Fuuv) =+ v —pv—23v+ Ay,

rule 26R in the usual conventions [8]. There is a conserved quantity defined by

E:= ZE(UE—1’°§;;’02’0§+1> = Z [(of = oiz1)? + (i —oi ™)
i

Takesue uses this result in one test of thermodynamic behavior {2]: Any initial
configuration has some total energy which determines an inverse temperature 3. In
simulations he observes a canonical ensemble at this temperature for subsystems.
More precisely, the dynamical distribution of energies E, for a subsyster of size
n+1is found to be close to D(E,)e~#E» where D(E,,) := (number of configurations
with energy E,)/4"*!. This phenomenon is observed even for fairly small values of
N and n. Similarly, he finds that by simulating a heat bath at cither end of the
system, rule 26R supports a temperature gradient [9].

Thus this automaton exhibits the type of surprising thermodynamic behavior
we would like to understand: Despite being far from the thermodynamic limit (small
N and n) the dynamical system displays equilibrium behavior well approximated by
this statistical mechanics model. Moreover, such success suggests that the system
is ergodic. We know, however, that it cannot be truly ergodic, for there are O(2%)
cycles [7] and only 2N energy surfaces, which means that the energy surfaces must
be partitioned into many orbits.

Our suggestion is that the origin of this thermodynamic behavior might be
found in a naturally associated two dimensional statistical mechanics model. The
Boltzmann weight W2} := exp[-BE(a,b,c,d)] can be identified as the transition
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matrix for the scattering process (o} ™", o:;}) — (o},0},,) or, equally well, as the
Boltzmann weight of a vertex model on a square lattice. Thus the deterministic
dynamical evolution of the cellular automaton is modelled probabilistically (hence
not exactly) by two such statistical mechanics models on a pair of dual lattices

Now, recall the transfer matrix method for the solution of two dimensional sta-
tistical mechanics models {10]. For the model we are considering here the partition

function is
=> I

states vertices t

where the energy E; associated to a vertex : is determined by evaluating the ex-
pression for the conserved quantity above on the spins (boolean values) assigned to
the incident edges by a given state. To apply the-transfer matrix method to this
model we would proceed by defining the diagonal-to-diagonal transfer matrices and
find that the partition function again becomes the trace over a product of identical
matrices.

Thus the problem of solving this model in the thermodynamic limit reduces to
the problem of determining the largest eigenvalue of some 2V x 2V transfer matrix
T. Because commuting matrices have common eigenvectors it has proved sufficient
in models like this one to recognize T as an element in a one parametcr family T(w)
of mutually commuting transfer matrices: [T(w),T(w')] = 0, where the spectral
parameter w is determined by the coupling constants/interaction strengths in the
energy functional defining the model. Further, it is easy to see that a sufficient
condition for the existence of commuting transfer matrices is that the Boltzmann
weights satisfy the Yang-Baxter (star-triangle) equation [10.11]:

W (W)W (w + W)Wk (W) = W) IVER(w + W),

The relevance of this result to our problem is the following. The two com-
ponent (spin %) solutions to the Yang-Baxter equation have been classified. The
most general solution is the eight-vertex model in which the Boltzmann weights
are parameterized by elliptic theta functions [12]. In this model the temperature
is related to the theta function nome p in such a way that p = 0 corresponds to
T = Terivical- Moreover, only at p = 0 is the limit « — o¢ defined. In this limit one
obtains the six-vertex model and the Yang-Baxter equation becomes independent
of the spectral parameter:

WEWIWak = wiewgtwil,
This is precisely the condition realizing the type III Reidemeister move of knot
theory [11,13] and is, as we showed in [3], satisfied by the Boltzmann weights of our

two dimensional statistical mechanics model. Thus our cellular automaton is really
the (critical) six-vertex model in disguise.
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Now, the dominant characteristic of criticality is scale or conformal invari-
ance, which means that probability distributions of states are invariant and correla-
tion functions transform covariantly under conformal transformations. Thus, if cur
model were really at a critical point, 1.e., N — oc as well as T = T¢pincar. the local
distribution of states would be that of the thermodynamic limit, a result consistent
with an observed canonical distribution. For finite N this will be moderated by
finite-size effects which round off the critical singularity. Some finite-size effects can
be computed explicitly [14]; for example, the correlation length will be asymptot-
ically proportional to N. This, in fact, is exactly what Takesue observes when he
measures the autocorrelation function of the energy flux to check the Green-Kubo
formula [9]. So the criticality of the associated two dimensional statistical mechan-
ics model is nicely consistent with the observed thermodynamic behavior of the
cellular automaton. - -

3. Lattice gases

Moving on to the simplest type of lattice gas model, in [6] we described the con-
struction of a family of one dimensional lattice gas automata based on a model of
't Hooft [5]. In an effort to clarify which features of the lattice gas automata are the
consequences of which constraints, we proceeded systematically: first setting the
kinematics of the model, then exploring the effect of requiring that the dynamics be
local, and finally constructing the possible dynamics consistent with the imposed
constraints.

The most interesting of these three steps is the second. By local dynamics we
mean that two particles interact only when they coincide in both space and time.
The simplest consequence of this requirement is illustrated in Figure 1. There
particles 1 and 2 interact at time t + 1, but particles 1’ and 3 move past each
other without interacting because their spatial coordinates always differ by an odd
number, precluding coincidence. This apparently trivial observation is at the origin
of the “spurious” conserved quantities often found in lattice gas models: here the gas
decouples into two noninteracting gases, one occupying the even nodes of the lattice
and the other the odd. In [3] and [4] we used the conserved quantity of the cellular
automaton to define the weights of the equivalent statistical mechanics model. Here.
rather than follow the usual approach to dealing with a spurious conserved quantity
(modifying the model in an attempt to break the unwanted conservation law) we
use it to effect a radical transformation of the model to one which is again equivalent
to 2 2 dimensional statistical mechanics model. The transformation is described in
[6]; to our knowledge this is the first time such an approach has been taken.

The conclusion is that the model lies on a first order critical line between dis-
ordered and totally ordered regimes of the six vertex model. We observe that this
result applies to ensembles of systems, in the thermodynamic limit. That the cor-
relation length vanishes, for example, does not mean that there is no correlation
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Figure 1.

between states of the probabilistic lattice gas automaton at successive time steps.
Nor would a nonvanishing correlation length mean that there were necessarily space-
like correlations in a given initial state. Instead, the interpretation is that deep in
the interior of a system, far from the boundary conditionus and thus/cr subject to
essentially random boundary conditions, a domain of sufficiently large size is in
thermodynamic equilibrium. Thus our results provide evidence for the first step
in the derivation of the macroscopic equations of motion—the assumption of local
thermodynamic equilibrium, as well as demonstrating the efficacy of constructing
and analyzing lattice gas automata according to (spacetime) symmetry principles.

In 't Hooft’s original model the particle trajectories were to be interpreted
as defect lines in a (spacetime) lattice which developed curvature at the crossing
(interaction) points. Our immediate concern then, at least for this model, is to de-
termine the consequences for this interpretation of our transformation to a solvable
statistical mechanics model and the conclusions about its thermodynamics that we
thereby draw. Qur results should be compared to a model where the energy of a
configuration depends on the curvature as it does both in models for spacectime and
models for crystalline materials. Of course, this also raises the general question of
what energies/weights might be appropriate when such a simple lattice structure is
not available. For an interacting particle model of a generic dynamical system the
weakest information to which one would have access is the causal ordering of the
interactions; our work to this point suggests addressing the question of whether at
least some such models could be mapped into a statistical mechanics framework:
though one could not expect the resulting model to be solvable, some understanding
of the dynamical system might be gained nevertheless.
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